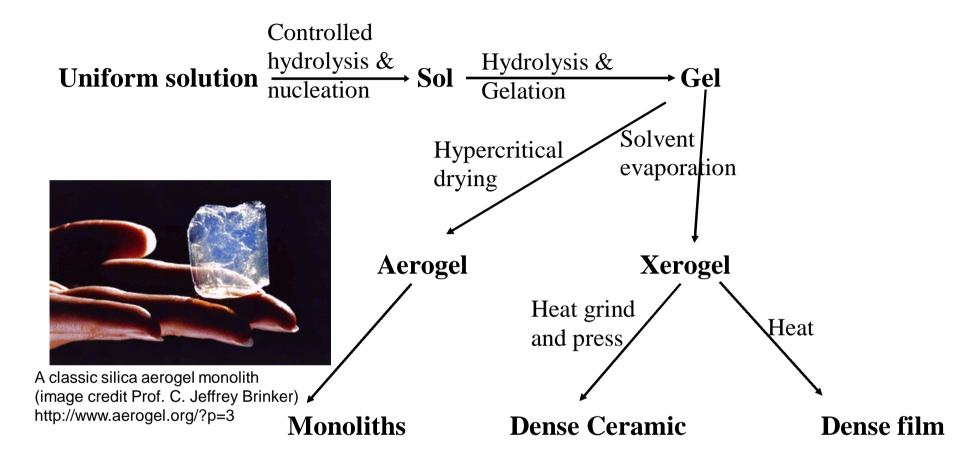
CH5716 Processing of Materials

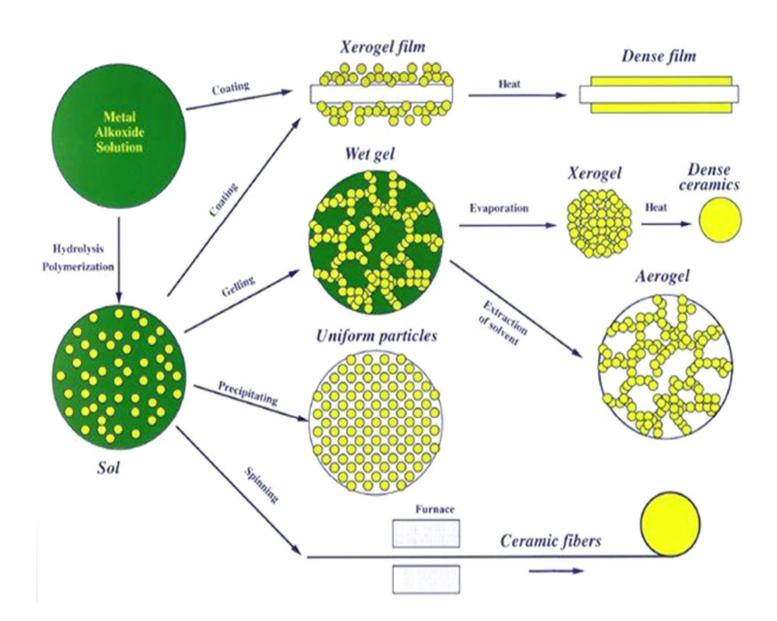
Prof. J.T.S. Irvine

Lecture JI2 – Sol gel + intercalation


Sol gel processing

Two approaches

- 1) Dispersion of colloidal particles (often oxides) in a liquid to give a solution, which upon manipulation of pH or concentration undergoes gelation.
- 2) Preparation of a metal-organic precursor in solution, which upon addition of H₂O, undergoes gelation.


Features

- low temperature synthesis (small particle size, homogeneous on atomic scale)
- synthesis of new phases possible
- capacity to form films and fibres
- high cost
- long processing time complex

Aerogels - formed with minimal shrinkage, cracking

- 1% of volume solid
- -high strength-mass ratios

Non-aqueous routes

For alkoxide route

Hydrolysis

$$M(OR)_x + x H_2O \rightarrow M(OH)_x + x ROH$$

Condensation

$$2M(OH)_x \rightarrow (HO)_{x-1}MOM(OH)_{x-1} + H_2O$$

Hydrolysis/condensation reactions lead to dimerspolymers-gels

Sol gel Mechanisms - for Si alkoxides Initial Step Hydrolysis

Low water/Acid catalysis

Hydrolysis S_N^2 nucleophillic substitution

Acids enhance kinetics - produce good leaving groups and eliminate requirement for proton transfer in transition state.

Acid catalysed directed towards ends - linear chains

High Water/Base catalysed

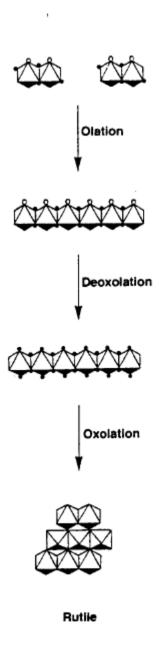
Base catalysed leads to highly branched polymers

Condensation

via nucleophilic condensation mechanism water release generally favoured

Si(OR)3(OH) -H2O, H+

Hydrolysis and condensation occur


Nature of final product depends upon pH, water/alkoxide ratio (*r*)

Ti, Zr alkoxides d⁰

hydrolysis rates and condensation rates for Ti alkoxides @ 10⁴ times higher than for silicon alkoxides

Condensation Pathways for TiO₂

Olation

Non-hydrolytic sol-gel processing

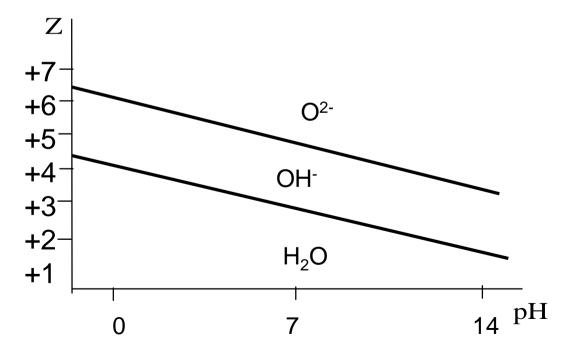
Conventional sol-gel: formation of M-O-M bridges through hydrolysis and condensation reactions

Si alkoxides, transition metal alkoxides vastly different hydrolysis rates

Alternative route: M-O-M bridges obtained by condensation between halide and alkoxide with elimination of alkyl halide

$$M-X + M-OR \rightarrow M-O-M + R-X$$

e.g. SiO₂/TiO₂, SiO₂/ZrO₂ solid solutions


Aqueous routes

Sol Gel and Aqueous Chemistry of Metal Oxides

more complex than alkoxide owing to the occurrence of spontaneous hydrolysis and condensation reactions in the aqueous medium, dependent on pH, concentration, temperature

hydrolysis

$$[M(OH_2)_N]^{Z^+} + hH_2O \rightarrow [M(OH)_h(OH_2)_{N-h}]^{(Z-h+)} + hH_3O^+$$

hydrolysis continues until mean electronegativity of hydrolysed precursor χ_p equals that of the aqueous solution χ_w

 $\chi_{\rm w} = 2.732 - 0.035 \text{ pH}$

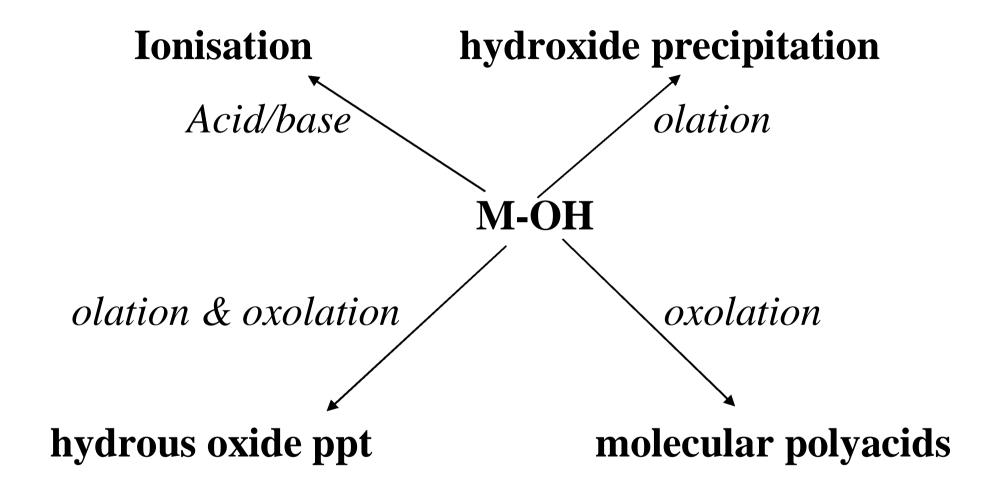
h depends on Z and pH

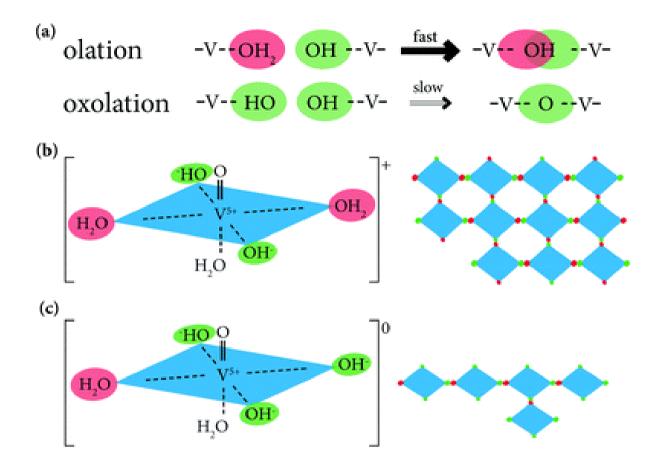
Condensation occurs on going into the hydroxo regime from either the aquo- or the oxo- regimes

pH for condensation can be predicted.

Condensation of Inorganic sol-gel systems

Aquo/hydroxo regime - 2 mechanisms


Olation - ol bridges


Oxolation

Nucleophilic addition of OH groups onto metal ions is followed by 1,3 proton transfer to form an oxo bridge

$$M-O-M-OH_2$$

Chemistry depends upon electronegativity of cation

Schematic sketch of precursor condensation forming low-dimensional $NH_4V_3O_8$ networks. The simplified olation and oxolation processes are shown in (a). Considering predominant fast olation reactions, positively charged (b) and neutral (c) precursors yield the formation of 2D and 1D networks, respectively.

Zakkarova et al DOI: <u>10.1039/C3DT32550D</u> <u>Dalton Trans.</u>, 2013, **42**, 4897-4902

High valent cations (z>4)

oxohydroxo anions $[MO_x(OH)_{m-x}]^{(m+x-z)-}$ in aqueous solution

condensation only possible by oxolation (as no H₂O molecules coordinated to metal)

Two mechanisms

- 1. If coordination expansion of metal is possible: nucleophilic addition via M-OH or M=O. Chains and rings are formed very rapidly \rightarrow edge or face sharing polyhedra
- 2. If no coordination expansion is possible: nucleophilic substitution \rightarrow corner sharing polyhedra M-OH + M-OH \rightarrow M-O-M-OH₂

Alternative possibilities

TiO₂

- 1. Na₂TiO₃ in conc HCl + base ->TiO₂ gel TiO₂: anatase or rutile depending upon conditions eg pH
- 2. $Ti(OR)_4$ R = Et, n-Pr, i Pr, n-Bu etc Dissolve in ROH, add H_2O in alcohol, with HCl/HNO_3 catalyst

Sintering and grinding of gel results in ultrafine TiO₂ powder with high surface area -catalysis, photocatalysis, ceramic products

BaTiO₃

Ferroelectric material used in capacitors, thermal cut-out switches etc.

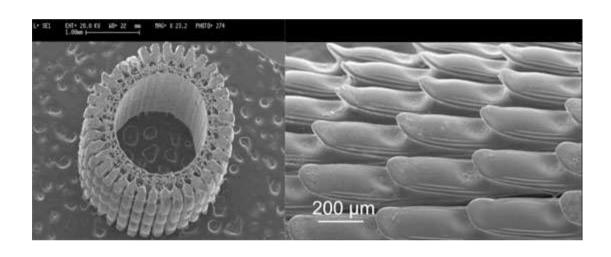
- 1. $Ti(OR)_4$ + hydrated salt of barium in ROH -> gel
- 2. $Ba(OEt)_2 + Ti(OEt)_4 \rightarrow gel$
- 3. BaTi complex organometallic precursors eg Ba₄Ti₁₃ nucleus

1000°C sufficient to produce 90% dense ceramic 1300-1500 normally required for BaTiO₃

Biomineralisation

Biology is a master of chimie douce.

Consider calcite - CaCO₃


lab samples grown at room temperature cubic 20µ edge best examples

Sea urchin spines also single crystals, 2mm

contain 0.02wt% protein

1 molecule - 10⁵ unit cells

Biomineralisation

Sea urchin spines also single crystals, 2mm

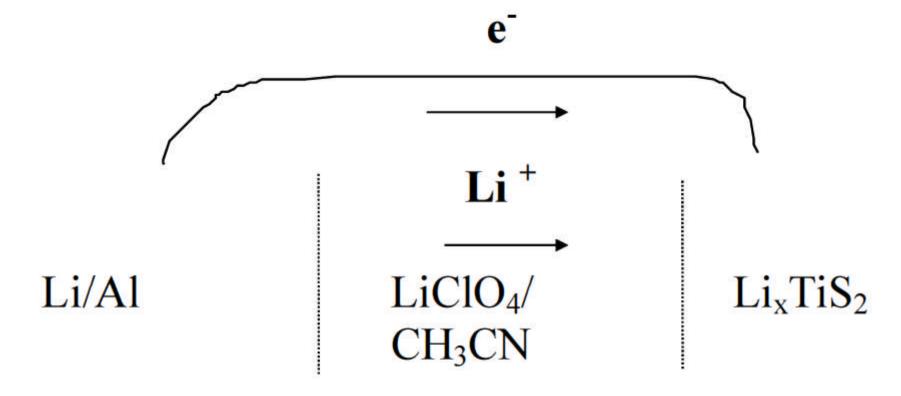
contain 0.02wt% protein

1 molecule - 10⁵ unit cells

http://www.asianscientist.com/in-the-lab/sea-urchins-spiny-strength-calcite-crystals-2012/

INTERCALATION

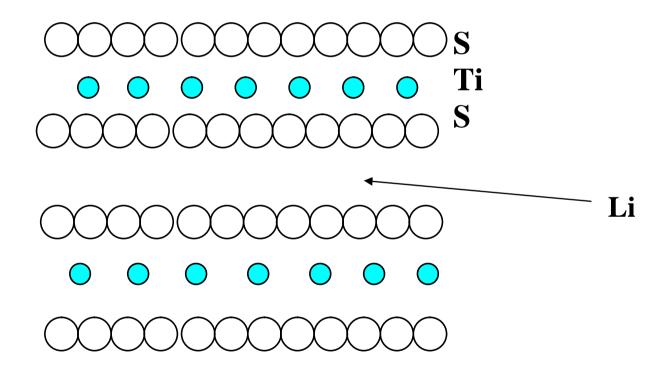
 MX_n phases with layered or tunnel structures can be intercalated at room temperature with lithium to give reduced phases A_xMX_n


- (i) Topochemical, little rearrangement of host
- (ii) reversible reaction, chemical or electrochemical
- (iii) Cations and electrons transferred mixed ionic/electronic conductors.

Insertion - similar process but into a 3-d host lattice

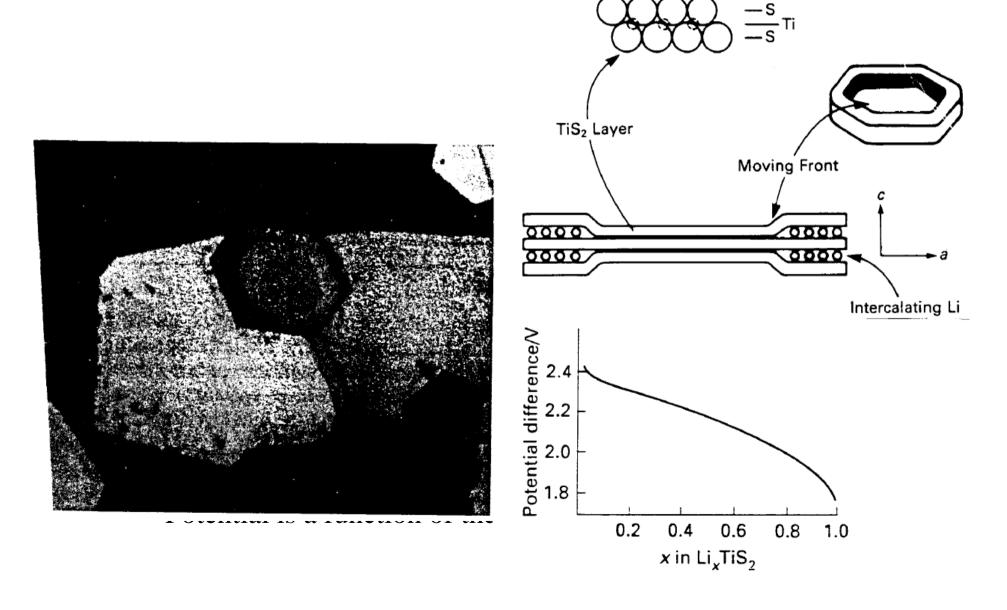
Chemical -

$$x BuLi + TiS_2 \longrightarrow Li_xTiS_2 + x/2 C_8H_{18}$$


Electrochemical

$$Li \longrightarrow Li^+ + e^ Li^+ + TiS_2 + e^- \longrightarrow LiTiS_2$$

Mechanism


TiS₂ hcp S with Ti occupying 1/2 the octahedral interstices

Li_xTiS₂ exists for $0 \le x \le 1$, no major change in structure, except for expansion in **c**.

Mechanism

For Li_xTiS₂ intercalation front starts at edge of crystal

Further Examples

Graphite + K
$$\longrightarrow$$
 C₈K

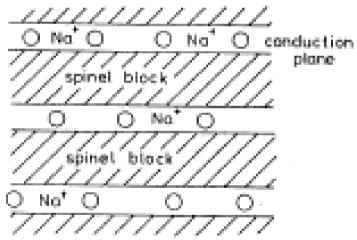
Graphite + Na
$$\longrightarrow$$
 C₈Na (superconductor)

$$C_{60} + C_S \longrightarrow C_{83}C_{60}$$

Graphite
$$F_2/HF \rightarrow C_4F$$

 TiO_2 , anatase

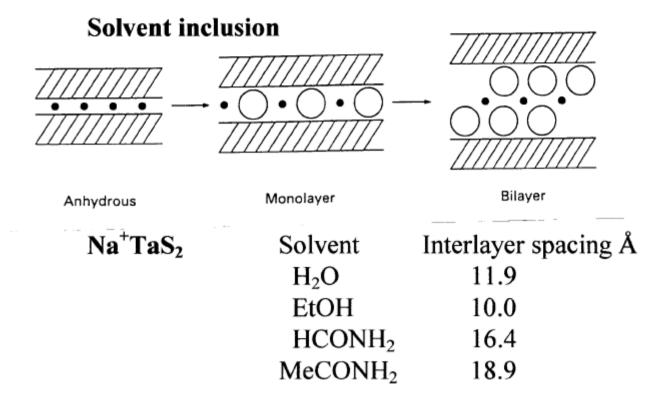
BuLi + 2TiO₂
$$\longrightarrow$$
 2 Li_{0.5}TiO₂ (anatase)
2Li_{0.5}TiO₂ \longrightarrow LiTi₂O₄ (spinel,LT)


Chimie Douce - Ion Exchange

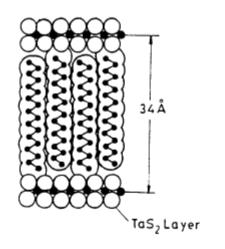
Intercalation + deintercalation

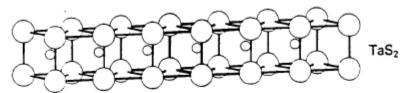
Oxide containing mobile ions

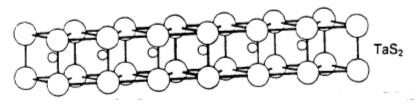
Heat in molten salt flux


Good example is Na⁺ B alumina (@ Na₂Al₁₆O₂₅)

Na can be exchanged with


M⁺ Li, K,Rb, Ag, Cu, NH₄, H₃O M²⁺ Ca, Sr, Ba, Fe, M³⁺ Eu, Nd, Fe


INTERCALATION OF NEUTRAL SPECIES


Other species that can be intercalated

 NH_3 pyridine cobaltocene chromocene $[Fe_6S_8(P(C_2H_5)_3)_6]^{2+}$

Texts

SS reaction + West Solid State Chemistry and its Applications

Sol Gel David Thompson, Insights into Speciality Inorganic Chemicals

http://www.solgel.com/educational/educational.htm