CH5716
Processing of Materials

Ceramic Processing

Lecture MC2 – Review of Bulk Ceramic Processing
Clay materials

Clays are families of naturally occurring minerals
Formed from weathering of other rock materials eg feldspars
Found in deposits either where formed or build up by transportation
By nature very variable - with large number of variations

- Aluminosilicate nature with a layered structure
 - Alternating sheets of silica tetrahedra and octahedral alumina
 - Tetrahedral and octahedral be linked via bridging oxygen
 - Outer surfaces of octahedral sheet will be hydroxyl groups
 - This can form H bonds with adjacent tetrahedral layers

- Form platelet shaped particles
- Clays generally classified layer arrangement

1:1 Clays equal number of Tet & Oct layers
 - H bonding between layers
 - Low propensity for water absorption
 - Tend to be purest – Kaolinite

2:1 clays have 2 tet layers to every oct layer
 - Tet – Tet faces can be stabilised by cations (Na\(^+\), K\(^+\), Ca\(^{2+}\))
 - Can lead to greater water absorption and swelling
 - Can be good sorbent materials
 - Illite, smectite, bentonite
Forming of Clay

• All clays will be lubricated by addition of water
 • Improves plasticity – too much and will become unworkable
 • Clay platelets separated by water molecules and held by H-bonding
• Bond will shear if force applied but has enough strength to retain form at rest
• Too much water then platelets become too separated – move to dispersion
• If this is stable can form a slip – thick creamy dispersion

Forming by several means
• Hand building- coils, sheet forming
• Wheel throwing
• Extrusion
• Slip casting
Dry & Firing Clay

• Drying evaporates excess water
 • Platelets move closer together
 • Allows direct H-bonding between hydroxyl groups

• Known as “leather hard” stage
 • Clay can still be recovered to plastic state by reintroduction of water

• Shrinkage will occur (5% -15%)
 • lower in kaolinite and illite based clays
 • Therefore preferable as reduced structural failure

• Initial heating on firing drives off further water
 • Decomposition of hydroxyl groups
 • Clay-OH-HO-Clay → Clay-O-Clay + H₂O(g) (chemically bound water)
 • This occurs ~ 500°C and is irreversible
 • Formation of metakaolin
 • Loss of platelet structure, increase in amorphous phase

• Continues up to 1000°C known as biscuitware
 • Highly porous, good for application of glaze slips

• 950-1050°C vitrification begins
 • Further production of liquid/amorphous phases
 • Spinels (Si₃Al₄O₁₂) may also be formed depending on initial composition of clay

• 1050-1200°C+ formation of mullite (3Al₂O₃.2SiO₂) and crystoballite (SiO₂)
 • Needle like structures appear
 • Transformation temperatures can vary depending fluxing phases - enhanced by feldspar additions

• Pottery type often defined by the firing temperature
Traditional Ceramics

Increasing firing temperature

<table>
<thead>
<tr>
<th>Earthenware</th>
<th>Stoneware</th>
<th>Porcelain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Relatively course red clays</td>
<td>Similar to Earthenware</td>
<td>Appeared in T’ang Dynasty China 618-907AD</td>
</tr>
<tr>
<td>Fairly low firing 950-1050°C</td>
<td>Higher Firing 1200-1300°C</td>
<td>From fine kaolin clay, quartz & feldspar</td>
</tr>
<tr>
<td>Minimal vitrification</td>
<td>At leased partially vitrified</td>
<td>Fully vitrified 1250-1300°C</td>
</tr>
<tr>
<td>Porous if not glazed</td>
<td>Stronger & nonporous</td>
<td>White, translucent, resonant</td>
</tr>
</tbody>
</table>

Porcelain

- From fine kaolin clay, quartz & feldspar
- Fully vitrified 1250-1300°C
- White, translucent, resonant
- Fine quartz grains in glassy matrix

Soft Paste Porcelain

- Lower kaolin, therefore alumina content
- Allows lower Firing
- less plastic unfired body
- Not as tough, rare

Hard Paste Porcelain

- Higher kaolin & feldspar
- Good plasticity and formability
- But needs higher firing 1300-1400°C
- 1st European pieces ~1707AD in Saxony

Bone China

- Similar to HPP but with 50% animal bone
- Calcium phosphate helps flux the vitrification
- Improves strength, translucency & whiteness
- Perfed by Josiah Spode, England end 18th century
- Known as “Spode China” or “English China”
Technical Ceramics

• Most likely raw material form will be a powder
• Powders are the general source of the ceramic material in thick film processing
• They form the heart of the system, other components will often be tailored round the powder
• Other ingredients basically facilitate the processing of the powder
• Hold it in form and shape until formed into a consolidated ceramic body during firing

 Powders can be manufactured by several Methods
 Solid State reactions
 Sol-Gel
 Combustion
 Precipitation
 Vapour Phase reaction

 All will result in differing characteristics

 Surface Area, Size and Shape
Some Powder Definitions

Primary Particle - Smallest powder unit, cannot easily breakdown further. In very fine ceramics may be a single crystallite, but most often polycrystalline grain.

Agglomerates – Clusters of primary particles – what is generally in the bottle. Detrimental effect on processing, Need to be broken down by milling. Soft agglomerates are weakly bonded easy to break down, hard agglomerates have strong interparticle bonds – can be bad news.

Particles – General term, including both of the above.

Granules - Larger agglomerates 0.1-1mm in diameter, often formed on purpose for dry flow characteristics for mass handling and mould filling in automated processes.

Flocs - Clusters of particles held together by electrostatic forces often in suspensions – very soft agglomerates.

Colloids - Very fine particles (down to 10’s nm scale), held in suspension by Brownian motion, if good will be highly stable.

Aggregates - Very large particles >1mm.
Powder-Ceramic Relationships

Dense Film
- Particle Size – Fine (<1µm) preferred
 - can be larger but higher firing required
- Size distribution – Narrow
- Shape – Spherical or equiaxed
- Agglomeration – Minimal

Porous Film
- Particle Size – larger OK (0.7 up to 5µm)
- Size distribution – wider or multimodel
- Shape – wider scope, not so critical for densification
 - but can affect rheology
- Agglomeration – still low levels preferred
 - for rheological reasons
Other Powder Considerations

Shape

Spherical
- The “prefect” powder, most theoretical models assume spheres

Irregular
- Most common
- SSA greater than equivalent sphere
- Will not pack as well as spheres

Porous
- High SSA, pores may interact with solvent, dispersant & binder.
- Agglomerated or flocced systems may exhibit pseudo-porosity and time dependant rheology

Platelet
- High aspect ratio, important feature in formability of clay based ceramics
- In slurries will have time dependant rheological properties
- May be difficult to attain good packing and green densities

Density

- Most formulations based around wt% as mass is easy to deal with
- Although most interactions within a slurry occur with respect to vol%
- Therefore density is important when creating or modifying slurries
- Ceramic densities can vary widely eg SiO$_2$ at 2.16g/cm3 to WC at 15.6g/cm3
- Many slurries in the region of 25-35vol% of solid
 - Addition of pore former is another important aspect (graphite ~2.09-2.23g/cm3) and should always be initially considered in terms of volume
 - Density of ceramic is key, not to be confused with “bulk density” which is a measure of how well a powder packs
Powder Dispersion

• Powders from bottles/storage will often be formed from agglomerates or floccs
• This is especially true of finer powders

• For dry processing a free-flowing granular powder will be preferred
 • Reduced blocking, better packing
 • For wet processing some form of milling mixing will be employed
 • Impart energy to breakdown agglomerates
 • Effects may be enhanced by use of dispersants

• Ball milling – low energy,
 • Low viscosity systems – dispersion milling for slip based technologies
 • Impact action between balls and balls-container breaks down agglomerates

• Attrition milling, Planetary Ball milling, vibratory milling
 • Higher energy approach – still impact based
 • Harder agglomerates, higher viscosity systems, size reduction

• High shear mixing
 • Two/triple roll milling, Z-blade mixer, high intensity mixer
 • Dispersion of powders into very high viscosity mixes
 • Inks, pastes, dough
 • Application of shear disperses agglomerates
Bulk Shaping Methods

Fall into 3 main Categories
 • Powder Compaction
 • Plastic Forming
 • Casting

<table>
<thead>
<tr>
<th>Shaping method</th>
<th>Type of feed material</th>
<th>Type of shape</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dry pressing</td>
<td>Free-flowing granules</td>
<td>Small and simple</td>
</tr>
<tr>
<td>Isostatic pressing</td>
<td>Fragile granules</td>
<td>Larger and more intricate</td>
</tr>
<tr>
<td>Extrusion</td>
<td>Plastic mass using a viscous polymer solution</td>
<td>Elongated with constant cross section</td>
</tr>
<tr>
<td>Injection molding</td>
<td>Organic binder giving fluidity when hot</td>
<td>Complex</td>
</tr>
<tr>
<td>Slip casting</td>
<td>Free-flowing cream</td>
<td>Mainly hollow</td>
</tr>
</tbody>
</table>

Plastic forming and Casting share many of the organic constituents as Thick film processing (to be discussed in a later lecture) however at much higher solids loading.

Aim is to end up with a green (unfired) form as close as possible to final fired shape (Net shape)
Minimise green machining or other post forming operations
Slip Casting

- Well established technique in pottery industry
 - Low cost and efficient for producing complex shapes
 - Most hollow ceramic objects (such as whitewares) produced this way
- A porous mould is created by casting plaster of paris (\(2\text{CaSO}_4 \cdot \text{H}_2\text{O}\)) around master model of green part
 - Scaled to allow for shrinkage
- Aqueous based slip is poured into this mould
 - Good dispersion essential to prevent settling
- Water is drawn by capillary action from slip into mould walls
 - Creates a layer of dry ceramic on walls of mould
 - Once a sufficient thickness is built up excess slip drained away
- Green ceramic form removed from mould ready for final dying and firing
Dry Pressing (Uniaxial)

- Suited to production of simple shapes
- Free flowing powder is best
 - Allows powder to move and pack during pressing operation
 - Larger particle sizes preferable for this
 - Often an application for granules
 - Fine particles may “block”
 - Leads to flaws in final piece
- Sometimes a small amount of binder can be added
 - Up to 5wt%
 - Helps green strength and handleability
- Uniaxial nature has uneven pressure distribution
 - Can lead to stress fields in pellets
 - Cone & cup failures or subsurface cracking can result

Schematic of uniaxial pressing

Representation of stress lines in uniaxially pressed pellet
Cold Isostatic & Hot Isostatic Pressing

Cold Isostatic Pressing (CIP)
Pressure applied by fluid (oil or water)
Even distribution of pressure onto powder

Wet bag is simplest form
- Powder paced into rubber bag with any other formers
- Bag placed into chamber and sealed
- Chamber filled and pressurised
- Pressure slowly released and bag removed
Wide range of sizes & shapes, simple tooling, uniform density
Only simple shapes, slow process

Dry bag incorporates rubber bag into mould
- Powder introduced along with any formers
- Fluid introduced and pressurised
- Removal of pressure releases bag and part removed
Full automation possible, faster cycles, more complex parts
Spark plug Insulation classic example

Hot Isostatic Pressing (HIP) combines heat and pressure
Process referred to as HIPing, product is HIPed
Furnace inside pressure vessel
Preformed products used placed inside pressure vessel
2 flavours — Encapsulated with preform in deformable container
Non-Encapsulated here presintered preform is used
Gas such as argon used as pressurising fluid
Temps up to 2000°C have been used
Used for hard or refractory materials eg SiN
Also been used for piezoelectrics PZT, BaTiO₃, SrTiO₃
Good density with low grain growth — but costly
ViscoPlastic Processing (VPP)

• Number of processes revolve around VPP
 • This involves turning the ceramic into a plastic mass
 • Consistency varies between putty and bread dough
• Generally based around aqueous formulations
• Premixed under high shear conditions to break up agglomerates and evenly disperse ceramic
• Plastic mass has high solids loading and good formability and high green density
• Near net shape processes possible (injection moulding)

<table>
<thead>
<tr>
<th>Refractory alumina</th>
<th>Vol%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alumina (<20μm)</td>
<td>50</td>
</tr>
<tr>
<td>Hydroxyethyl cellulose</td>
<td>6</td>
</tr>
<tr>
<td>Water</td>
<td>44</td>
</tr>
<tr>
<td>AlCl₃ (pH > 8.5)</td>
<td><1</td>
</tr>
</tbody>
</table>

Model VPP Formulation

High Intensity Mixer

Two Roll Mill
Rolling/ Calendering

- Produces large sheets of material
- High shear process allows high solids loading
- Dough constancy allows thicker sheets (mm range) to be produced
- Sequential rolling can also result in layers of 1-5micron in thickness
- High solids loading can minimise firing shrinkage
- Careful control of green body characteristics to balance formability and sintering
Ram Extrusion

- Extrusion produces controlled cross sections with high aspect ratio
- Forms may be solid or hollow
- Ram extrusion is the most basic extrusion process
 - Think toothpaste out of a tube
- Barrel is preloaded with VPP paste
- Piston is primed and pressure applied
- Forces paste out through die
- Extrudate can be cut to desired length dried then fired
- Batch Process with premixing required

Schematic of ram extruder

High intensity mixer and ram extruder in industrial development lab
Screw Extrusion

- General principles same as ram extrusion
 - Material is forced along barrel and out through controlled section die
 - This time transport mechanism is via Archimedean screw

- Increase in root diameter along length increases shear
 - Allows mixing and de-airs paste
 - Continuous process

- Ceramic can also be mixed with thermoplastic and extruded hot (150-200°C)
 - Heavily filled polymer processing

- Twin screw designs widespread
 - Improve transport
 - Promote mixing

- Can allow for elimination of initial high intensity premixing process
Injection Moulding

Another polymer related process
Both ram and screw version exist

Can be used with VPP or thermoplastic processing
Again is it polymer or ceramic processing?
Other additives often used to modify rheology eg lubricants

Process
As material moves along the screw it gathers at the tip
Screw moves back under this pressure
At a defined point the screw plunges forward
Material injected into mould
If Thermoplastic it cools and is then ejected
Cycle repeats
Transport phase overlaps cooling to minimise cycle times

Complex shapes can be produced
Although some shrinkage on firing

Moulds (tooling) complex and expensive
Limited use for prototyping
Better for long production runs of many 1000’s units